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Abstract 

We present data demonstrating that interference plays a role 
in the fan effect. We also show that this cannot be accounted 
for using ACT-R. An ACT-R model is fit to the data and we 
discuss options for altering the model to account for the data.  

Keywords: interference; fan; spreading activation; ACT-R; 
memory; cognitive model. 

Introduction 

The fan effect refers to the fact that cues that are associated 

with more facts result in slower recall than cues that are 

associated with less facts. For example, in the study that 

established the fan effect, Anderson (1974) asked subjects to 

memorize facts about where various different characters had 

been seen.  Subjects were then shown a cue with a character 

and a place and asked if it was true (i.e., if they occurred 

together in the set of facts subjects had memorized). 

Overall, the more places a character had been, the slower 

subjects were to confirm that it was either true or false. 

Also, subjects were slower to say false than they were to say 

true. 

In the ACT-R architecture (Anderson & Lebiere 1998) 

the cue is held in a buffer as a chunk and each slot value of 

the cue spreads activation to chunks in declarative memory 

that have the same slot values. For example, if the cue 

chunk is person:hippy location:park, then hippy will spread 

activation to all chunks that have hippy as a slot value and 

park will spread activation to all chunks that have park as a 

slot value (note, the slot names do not play a role). The 

number of lines of activation leaving from a slot value in the 

cue is the fan of that slot value, and the fan of the cue is the 

sum of the fans of its slot values. 

In ACT-R, the amount of activation spread from a cue to 

a chunk is theorized to be proportional to the number of past 

associations between slot values of the cue and the chunk. In 

the ACT-R architecture, the way of calculating this is based 

on an assumption that exposure to different facts has been 

counterbalanced, as in a psychology experiment (Anderson 

& Reder, 1999).  If it is assumed that everything has been 

counterbalanced and the number of exposures per chunk is 

equal then the activation can just be divided evenly among 

the chunks. So, the higher the fan the lower the amount of 

activation delivered to each individual chunk (see Anderson 

& Reder, 1999, for how to use ACT-R when exposures have 

not been counterbalanced). Anderson and Reder (1999) 

modeled the fan effect in ACT-R by assuming that people 

retrieve the most active chunk and respond true (i.e., they 

have seen it before) if the retrieved chunk matches the cue, 

and false (i.e., they haven’t seen it before) if it does not.  

One consequence of this model is that only the spreading 

activation received by the chunk that is chosen affects the 

reaction time (RT). In other words, there is no interference 

from the activation of other chunks. However, as fan goes 

up so do the number of other chunks that receive activation. 

As part of a fan experiment we tested the effect of these 

“other” chunks to see if interference plays a role in the fan 

effect and how that might alter the ACT-R fan model. 

Experimental Design 

In our experiment we created false cues by taking a true fact 

and replacing one element with a false element. For 

example, if subjects had studied the fact that the red hat is 

in the kitchen, we could create a false cue by replacing hat 

with pen. Under these conditions the ACT-R model predicts 

that the fan of the false element of the cue will have no 

effect on retrieval time, unless the original fact is not 

retrieved. However, we performed simulations with the 

ACT-R fan model and found that in our experimental 

design, the chunk representing the original version of the 

fact always received the most activation, and therefore was 

always chosen (as far as we can see this is also true for other 

fan experiment designs, but it is possible to create more 
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extreme differences in fan where this would not be true). 

Related to this, the fan of the false element should also have 

no effect on the error rates. Although the ACT-R fan model 

does not explicitly model errors, errors would be due to 

noise and the retrieval threshold. This could conceivably 

interact with fan for the chunk that is being retrieved but the 

fan of the false element does not affect this chunk.  

Method 

Subjects 

Twenty eight participants (11 males and 16 females: mean 

age 19.9 years, SD = 2.2) were recruited from introductory 

psychology courses a Carleton University to take part in the 

experiment. Participants received course credit as 

compensation for their time. 

Procedure  

The experiment was divided into three main phases: A study 

phase, a recall phase and a recognition phase. In the study 

phase each participant was assigned one of three unique sets 

of study sentences and was instructed to memorize the 

sentences in the list.  Once the participant indicated that they 

were prepared to proceed, the recall portion of the 

experiment began. 

The study set consisted of sixteen sentences of the form, 

“The color thing is in the place”.  The color term was one of 

ten colors; the thing was one of ten house-hold items; and 

the place was one of ten locations in/around a typical home.  

Very typical item/locations combinations, such as 

‘comb’/‘bathroom’, were not used in generating the study 

set sentences. Each term could have a fan of either 1 or 4. 

Thus, the four possible sentence fans were: 3, 6 9, and 12.   

In the recall phase each participant was tested three times.  

Each test began with the participant trading the study set 

with the experimenter for a new list of sentences identical to 

the study set, but with one term from each sentence replaced 

with a blank, and the order of the sentences randomized.  

The participant’s task was to correctly fill-in each of the 

blanks with the missing word.  The participant was given as 

much time as he or she needed.  Once finished, the 

experimenter recorded the number of correct responses and 

for each error, provided the correct missing word to the 

participant.  The participant was then given the opportunity 

to review the study set before being tested again.  The three 

tests were balanced such that each term from each sentence 

in the study set was replaced with a blank exactly once.  

After the third iteration the recognition phase began. 

The recognition phase of the experiment was conducted 

on a computer using Experiment Builder (by SR Research).  

The participant’s task was to correctly judge whether 

sentences presented in the middle of a 17” CRT display 

were members of the study set, or not.  Accuracy and 

reaction time data were recorded for each trial. 

Each participant was presented with 96 test sentences, 

which consisted of three exposures to each of the study set 

sentences, and 48 sentences that were not from the study set.  

The participants were told that they should consider 

sentences from the study set to be true, while all others 

should be considered false.  Each false sentence was 

generated by swapping one of the three terms from a true 

sentence with another term from the same category (e.g., 

color, thing, or place) and with the same fan.  Each true 

sentence was used to generate three different false 

sentences.  Thus, for each exposure to a true sentence there 

was a false sentence with the identical fan. Once the test 

sentence appeared the participant would indicate if the 

sentence was in the study set by hitting the ‘z’ key, or if it 

was not by hitting the ‘/’ key.  

Results 

The data from one of the participants was excluded from the 

results presented below.  This was due to the fact that this 

participant’s performance was significantly poorer than all 

other participants by a large margin (P < 0.001).  The results 

below reflect the data collected from the remaining 27 

participants. By the end of the third iteration of the recall 

phase the participants were correctly completing the 

sentences 91.4 percent of the time. The results of the 

recognition phase replicated the fan effect. These results are 

reported in Rutledge-Taylor, Pyke, West, & Lang (2010). 

However, in this paper we will focus on the results related 

to the predictions described above and fitting an ACT-R 

model to the data. 

The hallmark of a good scientific theory is that it makes 

precise, falsifiable predictions. Many theories in Psychology 

fail to meet this criterion. However, because ACT-R is 

precisely specified, models built in ACT-R are more readily 

falsifiable. To test the predictions of the ACT-R fan model 

(Anderson & Reder, 1999) concerning the fan of the false 

items we ran an ANOVA testing for the effect of the fan of 

the false items on RT and error rate. RT was significantly 

higher when the fan of the false item was equal to 4 than 

when it was equal to 1 (P<0.001). The error rate was also 

significantly higher when the fan of the false item was equal 

to 4 than when it was equal to 1 (P<0.001). We also ran a 

correlation between the fan of the false items and RT, with 

the fans of the true items partialled out. We found a 

significant correlation of r=0.156 (P<0.001, one tailed). 

Similarly, we ran a correlation between the fan of the false 

items and % errors, with the fans of the true items partialled 

out. Here we also found a significant correlation of r=0.193 

(P<0.001, one tailed). The size of these correlations was 

roughly similar to the same correlations done with the fan of 

the true items.  

Contrary to the predictions of the ACT-R fan model, we 

found that the fan of the false items significantly affected 

RT such that a larger fan led to slower responses (see Figure 

1). Consistent with this and also contrary to the predictions 

of the model, we found that the fan of the false element 

significantly affected the error rate such that a larger fan led 

to more errors (see Figure 2). These results indicate that 

interference from the false item plays a role in the fan effect. 
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Figure 1: Reaction time in msec/character for responding 

false to a false cue as a function of the fan of the false item 

in the cue. 

 

 

 
 

Figure 2: Percent errors for responding false to a false cue as 

a function of the fan of the false item in the cue. 

. 

 

Model Evaluation 

Although falsification of a model is sometimes viewed as a 

bad thing, falsification actually shows that a model was well 

specified. Falsification also creates an opportunity to move 

toward a better model. To this end we fit the ACT-R fan 

model to our data. Anderson and Reder (1999) used the 

following function to calculate RT: 

 

RT=I+Fe
-Ai

 

 

Where F is a scaling constant for time, I is a constant 

representing how long it takes subjects to make their 

response after they know it, e is the base for natural 

logarithms and A is the activation of the chunk (which 

includes spreading activation). Activation was calculated as: 

 

A=B+S 

 

Where B is base level activation and S is spreading 

activation. We fitted the Anderson and Reder (1999) ACT-R 

fan model to our data using identical parameter values, 

except that we had to increase S slightly from 1.45 to 2 to 

avoid getting negative activation values. As in Anderson 

and Reder (1999), B was set to zero because it trades off 

with S.  

   We eventually figured out that the slight difference in S 

was because we used the current method of calculating fan 

size in ACT-R 6, which is to add 1 to the fan of each item in 

the cue to represent the match between that item and a 

chunk in memory representing that item. For example, 1 

would be added to the fan of cup because it is assumed that 

we all have a chunk in declarative memory representing 

cup. In contrast, Anderson and Reder (1999) calculated the 

results without adding 1 to fans of the items in the cue. 

Whether or not to do this is an interesting issue. However, 

we recalculated our results without adding 1 and found it 

made very little difference to our results or conclusions. 

 

 
 

Figure 3: The original Anderson & Reder (1999) ACT-R 

fan model fit to our data. 

 

 

Figure 3 shows the fit of the original ACT-R fan model to 

our data. The fact that the model predicts an overall lower 

RT is not significant as it can be accounted for by assuming 

our subjects took longer to press the true/false keys, which 

can be modeled by increasing the I parameter. However, the 

shape of the functions and the relationship between the 

functions is clearly different. The human data shows a clear 

upward curve that the model does not and the model RTs 

converge as fan increases wile the human data diverges.  

Figure 4 shows the original fan effect data from Anderson 

and Reder (1999) re-plotted. Note that it shows the same 

divergence and upward curve. In fact, the original ACT-R 

model for this data (faithfully recreated and shown in Figure 

5) also shows a slight upward curve for the true cues, but 

not for the false cues. Also, as with our data, the false 

function diverges from the true function as fan goes up. 

However, it is important to keep in mind the scale of the 

graphs and realize that these effects are much smaller in the 

Anderson and Reder (1999) data and may not even be real, 

although, the consistency of this result across conditions and 

studies indicates that we should take it seriously. 
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Figure 4. Re-plotted data from Anderson and Reder (1999) 

 

An Alternative Model 

Next we addressed the issue of the parameter values. 

Specifically, we wanted to know if the ACT-R model could 

be made to fit the data. The only way that we could find to 

fit the data was to use the latency exponent parameter (f) 

that is available in ACT-R 6. This parameter, which has 

rarely been used, changes the RT function to: 

 

RT=I+Fe
-(f*A)

 

 

By setting f=3 and increasing F from 613 to 2000 we 

obtained a good fit to the data (see Figure 6 - note, that the I 

parameter could be increased to overlap the functions but it 

is easier to see this way). Increasing f lowers overall RT, so 

increasing F can be viewed as a way of compensating for 

this. The other effect of raising f was to increase the 

acceleration of the rate at which lowering activation raised 

RT. We will refer to this as the ACT-R(f) model (see Figure 

6). However, please note that this model violates the ACT-R 

modeling convention of using establish parameter values 

unless you have a justification (Anderson & Lebiere, 1998). 

 

 

 
 

Figure 5. A re-creation of the ACT-R fan model from 

Anderson and Reder (1999) 

 

 

 

 
 

Figure 6: The ACT-R(f) model fit to our data (note, that 

the I parameter could be increased to overlap the functions 

but it is easier to see this way). 

 

Rationalizing the alternative model 

There are three ways we can interpret the ACT-R(f) fan 

model. We know that it cannot account for our finding that 

the fan of the false item in the cue affects RT and % error 

any better than the normal ACT-R fan model. However, it is 

possible to interpret the manipulation of f as representing the 

aggregate effect of interference. In this case, f would be 

related to the total effect of interference in the task. If we 

assume that our use of more cue items and higher fans 

produced greater overall levels of interference, then the fact 

that our results show a more pronounced nonlinear effect 

than the Anderson and Reder (1999) results could be 

modeled by increasing f to represent higher levels of 

interference. In this sense, ACT-R could be adjusted to 

account for the presence of interference but could not be 

said to include a (process) model of interference. More 

studies would be required to see if f actually does function 

this way. 

A less charitable approach to understanding the ACT-R(f) 

model would be to point out that adding f to a model that 

already has a lot of parameters creates a system capable of 

fitting a lot of different functions. We had no principled 

reason to adjust f and found that it worked as part of a 

parameter tweaking process that involved all of the 

available parameters. So possibly the fit of this model is 

merely fortuitous. 

A third, more constructive way of viewing it is to see the 

manipulation of f as a proxy for an additional mechanism or 

process - in this case, interference. Although ACT-R does 

not include an interference mechanism, modifications have 

been introduced to do this. For example, the spacing effect 

modification of Pavlik and Anderson (2005) assumes that 

interference plays a role in order to account for the spacing 

effect in memory. Similarly, the semantic interference 

modification proposed by Van Maanen & Van Rijn (2007) 

assumes a form of interference to account for the Stroop 

effect. Likewise, our findings indicate the need for an 

explicit model of interference in ACT-R. A simple way of 

doing this that is consistent with our manipulation of f is to 

introduce a penalty that reduces activation based on the total 
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fan of the information in the cue – the higher the overall fan, 

the greater the penalty for all chunks receiving spreading 

activation. We could create such a function but it would not 

be meaningful at this point since it would be custom made 

to fit our data. Essentially, this would have the same effect 

as raising f, but the effect would be tied to the overall fan 

and therefore would account for our finding that the fan of 

the false item in the cue affects RT and % error.  

 

 
 

Figure 7. The ACT-R(f) model applied to the data from 

Anderson and Reder (1999). 

 

Model Re-Evaluation 

To gain further insight into the ACT-R(f) model we applied 

those parameter settings to our recreation of the Anderson 

and Reder (1999) fan model. The results are illustrated in 

Figure 7. The true results actually produce a reasonable fit 

to the data but the false results clearly do not fit. This could 

be because the fit of the ACT-R(f) model to our data was 

merely fortuitous, or it could be because higher f values are 

only appropriate when interference is higher, as suggested 

above. 

 

 
 

Figure 8. The Anderson and Reder (1999) ACT-R fan 

model fit to our data for correctly identifying true cues only. 

 

 

 

Based on our experimental findings showing that the 

ACT-R fan model for correctly identifying false cues cannot 

be correct, we also tried fitting Anderson and Reder's (1999) 

fan model to our data for the true results only (see Figure 8). 

Without having to fit the false data we were able to get a 

good fit by adjusting only F and I (F=1000; I=1100; S=1.45; 

similar to Anderson and Reder we did not add 1 when 

calculating the fan). This is much less problematic because 

it avoids adjusting f, which is almost never altered in ACT-

R modeling. Also, it is important to remember that there is 

variability associated with the human data so it is likely that 

a single intermediate value of F could be used to obtain a 

reasonable fit to our data and Anderson and Reder's (1999) 

data. 

Conclusions 

 Our results show that the ACT-R fan model for correctly 

identifying false cues cannot be completely correct. Also, 

although fitting ACT-R to our data was possible, it was also 

problematic because it required unprecedented alterations to 

the parameter values as well as assumptions about the 

meaning of those alterations that remain untested. However, 

when we did not try to fit the ACT-R fan model for 

correctly identifying false cues, the ACT-R fan model for 

correctly identifying true cues fit our data well, without any 

problematic parameter alterations. Based on this, it appears 

most likely that the problem lies with the assumptions and 

processes behind the ACT-R fan model for correctly 

identifying false cues.  
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Abstract 

We present a database that provides an interface for the ACT-
R modeling community to interact with each other 
(http://www-abc.mpib-berlin.mpg.de/actrdb/). The database 
includes estimated values of ACT-R parameters from a wide 
range of ACT-R modeling studies, selected from the studies 
available on the ACT-R website. It serves as a tool to query 
studies and estimated values for ACT-R parameters, 
providing the exact range of values for each of the available 
free numerical parameters. In short, the database supports an 
alternative community-based approach to manage the 
challenges associated with parameter estimation for complex 
cognitive architectures like ACT-R. 

Keywords: ACT-R; modeling; parameter. 

Managing Parameters for ACT-R Models 

Unified theories of cognition allow us to approach 

mechanisms of human cognition in a holistic, cumulative 

manner (Simon & Newell, 1973). Among the existing 

unified theories of cognition, ACT-R is one of the most 

widely used architectures, producing the largest body of 

sustained research and application. In order to study a wide 

range of cognitive mechanisms, ACT-R includes a variety 

of modifiable parameters. While these parameters enable 

flexibility they also result in fundamental challenges. 

 

Wexler (1978) criticized the early framework of the ACT 

research program (Anderson, 1976), stating that “There is 

no explanatory power in ACT because there are no 

restrictions on human abilities”. He also posited that “the 

general problem with ACT is (its flexibility), it is simply so 

weak that there is no way to find evidence for or against it”. 

About twenty years later, Pashler and Roberts (2000, 2002) 

again brought these concerns to the fore, arguing that the 

practice of using good fits as major evidence for complex 

theories is “rotten to core”. Indeed, goodness-of-fit metrics 

remain a very common means of model validation. These 

concerns not only hold when criticizing ACT-R and some 

other unified models, but also address a wide-spread misuse 

of goodness-of-fits as key evidence in psychology. Sound 

scientific theory requires that models not only fit but also 

predict data (Gigerenzer, 1998; Gigerenzer & Brighton, 

2009). How can modelers of the ACT-R architecture deal 

with these concerns about parameter estimation and model 

fitting? 

 

There have been some attempts to understand the relation 

among ACT-R parameters that result from parameter fitting. 

For example, Anderson, Bothell, Lebiere, and Matessa 

(1998) suggested that there is a systematic linear 

relationship between the estimated values of activation 

thresholds and the logarithm of estimated latency factors. 

Their data also implied that estimated values of these 

parameters are exceedingly regular. To date, however, there 

has been no meta-analytic assessment to evaluate whether 

there is any sustained regularity of these estimated 

parameters for ACT-R models across other published 

studies. 

 

Computational cognitive models are often evaluated by 

their fit and generalizability. These properties of a model are 

related to two aspects of model complexity: (1) number of 

parameters and (2) the functional forms of computation. In 

part, such evaluations seek to evaluate the extent to which 

noise is unnecessarily captured (Pitt, Myung, & Zhang, 

2002; Oaksford, 2002). Using cross-validation, Taatgen, van 

Rijn, and Anderson (2007) estimated parameters of a base-

model once and then made use of these estimated values 

throughout subsequent models. This study exemplifies a 

strict practice that allows minimal parameter estimation; 

however, like many ACT-R studies, the work of Taatgen et 

al. still relied on superior goodness-of-fits as the major 

support for their proposed models. 

 

The latest ACT-R architecture version 6.0 has 62 free 

parameters with numerical values, together with the 

flexibility of mapping these parameters to tailor-made 

handlers and tens of other non-numerical parameters. 

Different instantiations of specific ACT-R models do not 

typically require setting and optimizing all these numerical 

parameters, as default values are provided. However, our 

analyses of a large and representative sample of ACT-R 

studies indicates that on average each ACT-R model 

modifies nearly six free numerical parameters for better 

model fitting. Moreover, many of these studies added task-

specific parameters. 
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